II PRIZE WINNER MRS.A.MADHUMITHA'S SOLUTION FOR 01.01.2023 GEOMETRIC PROBLEM

Given

AB & CE are two chords perpendicular to each other. Let it intersect at H

Let us prove $EB^2 + AC^2 = d^2$

Construct AG as diameter. Join AC, AE, BC, AC.

To show
$$EB^2 + AC^2 = d^2$$
 [: $In \Delta AGC, AG^2 = AC^2 + CG^2, d^2 = AC^2 + CG^2$]

It's enough to prove EB = CG

∴AEBC is cyclic quadrilateral

Let
$$\angle AEC = \angle ABC = \beta$$
, $\angle CEB = \angle BAC = \gamma$

$$\angle EAB = \angle ECB = \alpha, \angle ABE = \angle ACE = \delta$$

In
$$\triangle$$
AHE, $\alpha + \beta = 90^{\circ}$, In \triangle AHC, $\gamma + \delta = 90^{\circ}$

$$\alpha + \beta = \gamma + \delta = 90^{\circ}$$

$$\therefore \angle ABC = \angle AGC = \beta$$
 -----(a) (:

same chord subtend equal angles at circumference)

$$\therefore In \Delta AGC$$
, $\angle ACG = 90^{\circ}$, $\angle AGC = \beta$ by (a)

$$\angle GAC = \alpha = \angle EAB$$

$$\Rightarrow EB^2 + AC^2 = d^2$$
 -----(I)

Similarly $AE^2 + BC^2 = d^2$

Also
$$AH^2 + HB^2 + HE^2 + HC^2 = d^2$$
 -----(II)

(by I as $\triangle AHE \& \triangle CHB$ are right angle by Pythagoras theorem)

Hence $DM^2 + FC^2 = ME^2 \Rightarrow DM$, FC & ME are sides of right triangle.